Hydrothermal etching fabrication of TiO2@graphene hollow structures: mutually independent exposed {001} and {101} facets nanocrystals and its synergistic photocaltalytic effects
نویسندگان
چکیده
Highly exposed facets TiO2 attracts enormous attention due to its excellent separation effect of photogenerated electron-hole pairs and induced high performance of photocatalytic activity. Herein, a novel hydrothermal etching reaction was used to synthesize graphene-wrapped TiO2 hollow core-shell structures. Different with the reported co-exposed facets TiO2 single crystal nanoparticles, the present TiO2 core layer is composed by the mutually independent exposed {001} and {101} facets nanocrystals. Combined with the reduced graphene oxide shell layer, this graphene-wrapped TiO2 hollow core-shell structures formed a Z-scheme photocatalytic system, which possess simultaneously the high charge-separation efficiency and strong redox ability. Additionally, the as-prepared samples show a higher absorption property for organic molecules and visible light due to the presence of graphene. All of these unique properties ensure the excellent photocatalytic activity for the graphene-wrapped TiO2 hollow structures in the synergistic photo-oxidation of organic molecules and photo-reduced of Cr(VI) process. The TiO2 core composed with mutually independent exposed {001} and {101} facets nanocrystals is propose to play an important role in the fabrication of this Z-scheme photocatalytic system. Fabrication of Z-scheme photocatalytic system based on this unique exposed facets TiO2 nanocrystals will provides a new insight into the design and fabrication of advanced photocatalytic materials.
منابع مشابه
Hierarchical TiO2 nanospheres with dominant {001} facets: facile synthesis, growth mechanism, and photocatalytic activity.
Hierarchical TiO(2) nanospheres with controlled surface morphologies and dominant {001} facets were directly synthesized from Ti powder by a facile, one-pot, hydrothermal method. The obtained hierarchical TiO(2) nanospheres have a uniform size of 400-500 nm and remarkable 78 % fraction of {001} facets. The influence of the reaction temperature, amount of HF, and reaction time on the morpholog...
متن کاملTuning TiO2 nanoparticle morphology in graphene-TiO2 hybrids by graphene surface modification.
We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nu...
متن کاملTunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets.
TiO(2) films composed of flower-like TiO(2) microspheres with exposed {001} facets were synthesized by a simple one-pot hydrothermal method and exhibited tunable photocatalytic selectivity towards decomposition of azo dyes in water by modifying the surface of TiO(2) microspheres as well as by varying the degree of etching of {001} facets.
متن کاملGreen synthesis of shape-defined anatase TiO2 nanocrystals wholly exposed with {001} and {100} facets.
Anatase TiO(2) nanocuboids wholly exposed with high-energy {001} and {100} facets were successfully synthesized by a novel, environmentally benign synthetic strategy using acid-delaminated vermiculite (DVMT) and tetramethylammonium hydroxide as synergistic morphology-controlling reagents, where the DVMT layers act as effective hard template selectively stabilizing the {001} facets of TiO(2).
متن کاملHierarchical Oriented Anatase TiO2 Nanostructure arrays on Flexible Substrate for Efficient Dye-sensitized Solar Cells
The vertically oriented anatase single crystalline TiO2 nanostructure arrays (TNAs) consisting of TiO2 truncated octahedrons with exposed {001} facets or hierarchical TiO2 nanotubes (HNTs) consisting of numerous nanocrystals on Ti-foil substrate were synthesized via a two-step hydrothermal growth process. The first step hydrothermal reaction of Ti foil and NaOH leads to the formation of H-titan...
متن کامل